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DEFINITION OF SYMBOLS

Equations are presented in numerical order in the text and the symbols
used are listed below with their notation.

Subscripted symbols not shown below will obey the general subscript
notation.

Symbol Definition

A Ratio of feedback to error signal amplitude (open loop)

at

a Moment arm of cutting force (P ) about strut C
c c

at Moment arm of thrust force (Pt) about struts A and B

b Width

c Damping constant

D Deflection

d Thickness of hinge strut

d Deflection of notch
n

d Deflection of strut
s

E Modulus of elasticity

F Force

f Damping coefficient, also frequency

G Amplifier gain

h Distance between struts C and D

I h  Second moment of area of hinge

vi



DEFINITION OF SYMBOLS (Continued)

Symbol Definition

k Stiffness

L Combined notch and strut length of dynamometer housing

L Length of strut

L2  Length of notch

Lb  Length between bolt holes on flange

Lf Length between flanges ("I" section struts)

M Ratio of feedback to control amplitude (closed loop), also bending

moment

M* Equivalent mass

P Force

p Moment arm from "O" to vibrator axis (hinge)

"Q" Vibration term describing amount of damping in system

q Moment arm from "O" to tool axis (hinge)

R Dummy resistance

R Radius of curvature of housing notch
n

r Ratio of toolholder to housing mass (ml/m2)

s Frequency operator

T Vibrator transfer coefficient

Tf Flange thickness ("I" section strut)

Th  Torque on hinge

vii



DEFINITION OF SYMBOLS (Continued)

Symbol Definition

T Strut thickness (force dynamometer housing)
s

T(s) Transfer function

t Strut thickness at displacement (y) also time

t,  Thickness of " I" section strut

t2  Thickness of "I" section notch

t Minimum thickness of housing notchm

v Error signal

v. Control signal
1

v Feedback signal
o

v' Error signal after amplification (G)

X Displacement amplitude

x Displacement vector

y Displacement scalar

a Ratio of strut length to notch radius of curvature

E Strain

® Hinge angular rotation

A Phase between feedback and control signal (closed loop)

0 Phase between feedback and input signal (open loop)

a Strain over gauge length

w Angular frequency

1 Length of hinge strut

viii



DEFINITION OF SYMBOLS (Concluded)

Symbol Definition

General Subscripts

A Gauge A

B Gauge B

b Bending

C Gauge C

c In the cutting direction

cp Compressive

D Gauge D

d Dynamometer

f Flange

h Hinge

i Inertia

m Measured

mi Measured including inertia

T Temperature

t In the thrust direction

tr Torsional

v Vibrator

1 Of the dynamometer mounting structure

2 Of the dynamometer measuring element

ix



TECHNICAL MEMORANDUM X- 64786

THE DEVELOPMENT OF A TWO-COMPONENT FORCE DYNAMOMETER
AND TOOL CONTROL SYSTEM FOR DYNAMIC

MACHINE TOOL RESEARCH

INTRODUCTION

The need for research into machining processes is widely recognized.
Production rates are often limited by self-excited vibration, commonly known
as chatter, which results from the dynamic interaction between the metal
cutting process and the machine tool structure. Vibration causes increased
tool wear; dimensional inaccuracies; a poor surface finish, and can be
extremely noisy.

The increasing demand for higher production rates necessitates a
deeper knowledge of the cutting forces under dynamic machining conditions
so that the parameters affecting machine tool instability, or chatter, can be
established.

The objective of the work described in this report was to design and
develop a tooling system that would both measure the machining forces in the
cutting and thrust directions and oscillate in a controlled manner to simulate
a dynamic chip removal process.

DESCRIPTION

Force Dynamometer

Foreword. Care has to be taken when designing a dynamic force
dynamometer to maintain the proportionality between the strain in the measuring
element and the applied force. Kegg [11 has shown in general terms how the
natural frequencies of the dynamometer mounting system and the machine tool
structure may affect the output signal. Komanduri, et al, [21 substantiated
Kegg's findings and recommended dynamic calibration with the dynamometer
mounted on the machine tool structure. They further explained that if the
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measuring element mass was kept small in comparison to the mounting
structure mass then proportionality between strain and applied force would be

assured. Examining the theory will show why.

Objective. A force dynamometer which has to measure machining

forces needs to be part of the tooling or workpiece system. For convenience,
the stationary component is used as the dynamometer so that for multiedged

machining operations such as milling, the dynamometer is used as the work-
piece holder [31, whereas most single-point operations, such as turning,

require using the dynamometer mass as the toolholder. This section of the re-
port will concentrate on the design of a force dynamometer for a turning situation,
where only orthogonal cutting will be considered. The dynamometer therefore
need only measure forces in two mutually perpendicular directions in the plane
of rotation, i. e., for convenience, one in the cutting direction - tangential to
the workpiece at the tool, and the other in the thrust direction - radial to the
workpiece at the tool. The design should try to minimize cross sensitivity,
whereby a force in the cutting direction results in a reading, and hence an
apparent force, in the thrust direction. In this way, direct force readings can
be achieved without having to make corrections or solve simultaneous equations.

The high forces and tool tip temperatures that are characteristic of a
machining operation require a design that is stiff and has temperature compen-
sation. However, the design also needs to detect the lower magnitude oscil-
latory forces and so has to have a high sensitivity.

The final design will be incorporated in the tool control system that
will be described beginning on page 13.

Theory. The dynamometer measuring and support system can be
represented for analytical purposes as shown in Figure 1.

When subjected to an oscillatory applied force F 2 the equations of
motion become:

mzx2 + k. (x2 -Xi) + f2 N - 1) = F 2  (1)

mxit + kixt + f ,1i - 1; (, -x) - f (k - k) 0 (2)

Let x=Xeist and F=Feist (3)
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X m2 tF2
DYNAMOMETER
MEASURING

k2 f2 ELEMENT

1 m 1  MACHINE TOOL
STRUCTURE
AND/OR
DYNAMOMETER
MOUNTING

kl f' STRUCTURE

Figure 1. Schematic representation of a dynamometer and its support.

where i = i and s is a frequency operator and t is time. Then, after
algebra, the dynamometer output to force input can be expressed as

x, -X, 1 W 2 + 2c t is -s

F 2  m w2tW2 (2c t 1 2
2  

+2 2 02 1
2

) is - [ 1
2 

+ 22 ( 1 r) + 4w 1W2  C 21
2  

-l 2 + -W 1
+

W2 ( 1 i +) ) iS3 + 4 (4)

where:

= Nfki/ c i = f/2mkjt r = m2/mi

2 = c 2 = f 2 /2417i~

mw and w2 are the undamped natural frequencies of each of the spring,
mass systems. Resonances and antiresonances will occur when the respective
denominator and numerator is zero. It can be seen that-an antiresonance
occurs when s = WcNJ-2 and a resonance will occur at a frequency slightly
below this [ 11.

If the ratio r of the measuring element mass to the mounting system
mass is negligible in comparison with unity then the denominator in equation
(4) can be factored and becomes:
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X2 -XI 1( 1___ _ I1i l , (5)

F 2  m 2 [ W22 + 2c2 0 2 i s - s2

Therefore, if the mass of the dynamometer element is small compared
with the mass of the mounting structure, then the dynamometer will be inde-
pendent of the characteristics of the mounting structure.

Another aspect to be considered is the forcing of the structure directly
through the workpiece. This would be equivalent to letting the oscillatory
force F 2 act on the mounting system mass (mi) in Figure 1, in which case
the equations of motion reduce to:

Xj 0,2
2 + 2c2 w 2 is - S2

2 (6)2 W 2 + 2c2 w2 is

If W2 >> s, then X 1 and X 2 would be equal in magnitude and the dyna-
mometer would be isolated from disturbances to its mounting system. The
natural frequency of the dynamometer, therefore, should be well above the
operating frequency range.

Requirements.

1. Low dynamometer mass - to minimize the effect of the mounting
structure and reduce inertia corrections,

2. High element stiffness - to withstand high machining forces and
to combine with 1. above to create a natural frequency high
enough to ensure vibration isolation from the mounting structure,

3. High sensitivity - to detect lower magnitude oscillatory forces,

4. Minimal cross sensitivity - to ensure ease of operation and data
analysis, avoiding the solution of two simultaneous equations
before obtaining the machining forces, and

5. Temperature compensation - so that the high temperatures
generated by the machining process and the consequential heat
flow through the strain-gauged elements do not affect the
dynamometer sensitivity.
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Design. Apart from the listed design requirements there are a number
of mechanical considerations. The dynamometer mass will be utilized as a
tool-holder for cutting tests machining a square-threaded helical workpiece.
Only orthogonal cutting will be considered so that the toolholder assembly
should be mounted perpendicularly to the turning axis of the machine tool.

The force dynamometer is shown schematically in Figure 2. The tool-
holder is kinetically constrained with strain gauges A and B adding to give the
thrust force and gauges C and D adding to give the cutting force. Temperature
compensation can be achieved by mounting passive gauges perpendicularly to
the active ones (Fig. 3) and wiring them in opposite arms of the bridge
(Fig. 4).

PC
CUTTING

TOOLHOLDER (m2A

DYNAMOMETER MOUNTING STRUCTURE (m1)

Figure 2. Schematic of two-component force dynamometer.

The toolholder mass is minimized by using a light but stiff material
such as Beryllium.

The conflicting requirements of stiffness and sensitivity necessitate
using semiconductor strain gauges and high gain amplification.
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Tf L b

PASSIVE
f L, GAUGE

ACTIVE
t2 GAUGE

L2

Figure 3. "I" section strut showing design notation and
position of strain gauges.

Cross sensitivity generally arises due to compressive forces in gauges
C and D, for example, resulting in bending forces in gauges A and B. The
notches in the "I" section struts shown in Figure 3 allow bending at the notch
rather than over the gauge length with no significant effect on the compressive
stiffness of the strut.

Further cross coupling can arise from the relative placing of the struts
with respect to the applied force. If we assume that A, B, C and D are the
gauge outputs for respective strut forces FA, F , FC, FD, then for a cutting

force (Pc) in Figure 2:

Resolving: F + F =P ; F + F = 0 (7)

Moments about the intersect (h + a ) -P a
of struts A and D: F = P F = - (8)

C c h D h

where h is the distance between struts C and D; a t is the moment arm of the

thrust force (Pt) above the strut AB and a is the moment arm of the cutting
t c

for (P) outside the strut C.
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0 D.C.
+ VE SUPPLY

OUTPUT (A+B)

A AT B BT

-A -B

+ <

A & B ACTIVE GAUGES
AT & BT TEMPERATURE COMPENSATING

GAUGES
R- DUMMY RESISTANCE

Figure 4. Typical bridge circuitry adding gauges in thrust direction.



For a thrust force (Pt) in Figure 2 then:

Resolving: FA + F B  Pt FC D = 0 (9)

Moments about the intersect

of struts A and D: Ptat tat (10)
F , F =--

C h D +

It can be seen from the above equations that geometrical cross coupling

only arises from a thrust force (Pt) and will be negligible if the moment arm

(at) is zero; i. e., if the tool tip is in line with the strut AB. If this is not

possible then provided the gauge factors of C and D are identical and the

gauges are wired to add, then the cross coupling forces (Pt. at/h) in equation

(10), that are opposite in polarity, will be electrically eliminated.

For minimal cross coupling, therefore, it is essential that the gauge

outputs A, B, C and D be identical for a given strut force. The strut thick-

ness (t1 ) must be the same for all struts, and gauges should be in matched

sets. Possible electrical compensation will be discussed under electrical

design.

Detailed Design. The following quantities were calculated using the

nomenclature of Figure 3:

Eb
Compressive stiffness (kcp) =2L/t + L/t 1  (11)

Bending stiffness (kb) Eb (12)
(L/tl)3 - (L 1/t2) 3 + (L/t)

assuming the strut flanges are encastre and displaced in opposite directions.

1
Strain over gauge length (a) 1 (13)

16EbTf3
Flange stiffness (k ) L 3  (14)

1 L

Natural frequency (02) = (15)

8



The following dimensions were used:

L = 0.025 m b = 0.025 m

Li = 0.023 m ti = 0.003 m

L2 = 0.001 m t 2 = 0.0005 m

Lb = 0.006 m Tf = 0.006 m

m2 = 0.250 kgms E = 2 x 10 N/m 2 (Young's
Modulus)

The design data therefore becomes:

Compressive stiffness = 4.28 x 108 N/m

Bending stiffness = 1.84 x 105 N/m

Ratio of compressive to bending stiffness = 2320

Strain over gauge length = 0.03 pstrain/N

Flange stiffness = 8.0 x 1010 N/m

Ratio of flange to compressive stiffness = 120

Natural frequency (thrust) = 6.6 kc/s

Natural frequency (cutting) = 9.3 kc/s

Electrical Design. Typical bridge circuitry for monitoring the forces
in the thrust direction is shown in Figure 4.

There is a bridge for each active/passive gauge pair so that the respec-
tive outputs of A, B, C and D gauges can be monitored. In this way a check
can be made on the contribution of each gauge during calibration. The dummy
resistors (R) are chosen in matched pairs and should have resistive values
near those of the strain gauges. The bridges also have a balancing facility.
The bridge outputs are fed into operational amplifiers that have a fine-gain
adjustment to compensate for any mismatch in the gauge sensitivities. The
outputs are then added using another operational amplifier that has a gain
adjustment for the overall cutting or thrust force sensitivity. The bridge out-
puts are then fed to the appropriate monitoring equipment.

9



In the present study, forces were recorded on an Ampex loop tape re-

corder and played back through a Honeywell Visicorder, an oscilloscope and

an ac/dc rms-millivoltmeter.

Strain gauge specifications were as follows:

B. L. H. semiconductor strain gauges

Type: SPB3-12-12

Gauge factor: 108 ± 2 percent

Gauge resistance (unbacked): 139 ± 1 percent at 250C

Gauge length: 3.5 mms

Calibration. Calibration involves both static and dynamic forcing of the

dynamometer. Static calibration checks on the linearity, sensitivity and cross

sensitivity of the dynamometer while dynamic calibration determines whether

the static calibration results can be used over the operating frequency range;

i. e., that the operating range is away from the influences of any resonance or

antiresonance associated with either the system or the mounting structure.

Static calibration curves for forces in the cutting direction are given in

Figure 5 and show that the dynamometer is linear and that there is no cross

coupling from the cutting to the thrust direction. It can be seen that gauge D

is in tension, as predicted by equation (8).

Static calibration curves for forces in the thrust direction are given in

Figure 6. They again demonstrate linearity and show that cross coupling from

the thrust to the cutting direction, predicted in equation (10), is eliminated by

the summing procedure.

These static tests demonstrate that the cross sensitivity is less than
1 percent in either direction and can be neglected.

Dynamic excitation of the system showed that over the operating range

of 0-400 Hz there was no resonance or antiresonance due to the mounting

system and that the resonant frequency of the dynamometer was only slightly

less than anticipated. The high "Q" associated with this resonance indicated

that (f2 ) in equation (1) could be neglected so that only the inertia forces of

the toolholder need be considered. If F. represents the inertia force and F
1 m

the force measured by the dynamometer; i. e., a force proportional to strain
(E), which is a function (x2 - x1 ) in equation (1), then equation (1) becomes:

10



Pc

A
B SENSITIVITY 90.5 mV/N (C+D)

/ D0.54 mV/N (A+B)
D : CIRCULAR POINTS - CUTTING DIRECTION

~/ / . - TRIANGULAR POINTS -THRUST DIRECTION

2.0

1.5

.I
0

1.0
-

I-

0

-u

2 0.5
0

z

(A+B)

90 180 2 70 -360

FORCE (N)

D

-0.5

Figure 5. Static calibration in cutting direction.
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pPt

SENSITIVITY 90.0 mV/N (A+B)

0.25 mV/N (C+D)

CIRCULAR POINTS - CUTTING DIRECTION

- - TRIANGULAR POINTS - THRUST DIRECTION
2.0

(A+B)
1.5

I-
S1.0

- 0.5

0.0

90 180 270 360 450

FORCE (N)

-0.5

Figure 6. Static calibration in thrust direction.
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Fi + Fm = F2  (16)

where F., F and F 2 are force vectors. Calibration assures that F = F21m m
when F = 0 and frequency f= 0.

i

Inertia forces can be measured when F 2 = 0; i.e., when not cutting,
in which case F mi = -F.. Substituting back in equation (16) gives:

F - F = F 2  (17)m mi

where F mi is the measured inertia force. The real dynamic force therefore

is given when the measured inertia force is vectorially subtracted from the
measured cutting force. In the present application, (m2) in equation (1) was
chosen to be small enough to neglect this correction below 150 Hz.

Tool Control System
Objective. Forces during machining, because of the elastic nature of

a machine tool structure, cause a relative displacement between the tool and
workpiece. This has the effect of changing the chip geometry and altering these
cutting forces, which is why the cutting process and machine tool structure are
so often described as dynamically interacting. This procedure can lead to
instability of the machining process and severe uncontrolled vibration.

In order to evaluate how the machining forces arise and how they be-
have during this dynamic situation it is necessary to measure the machining
forces while the tool vibrates in a controlled sinusoidal manner.

"Vibration" in the text of this report will imply a controlled sinusoidal
oscillation rather than a random noise that is sometimes implied by other
writers.

This simulation of a dynamic chip removal process requires a frequency
range of 5 to 400 Hz and an amplitude range of 0 to 0. 125 mm (5 x 10-3 in.).

13



The tooling system would need to be flexible to vibrate and yet stiff
enough to remain isolated from the influence of the cutting forces and the
possibility of self-excited vibration or chatter. These conflicting requirements
necessitate developing a tool control system.

Tool Vibration. A tool can be vibrated in a number of ways, many of
which are severely limited by frequency. Wallace and Andrew [41 used a gear
driven eccentric cam to oscillate the cross slide of a lathe, but were restricted
to frequencies below 15 Hz by the inertia of the system. Hydraulic vibrators
are desirable because of their size and ease of mounting, but compressibility
of the fluid and flexibilities of the fluid supply lines can cause resonances at
the upper end of the required frequency range. Smith and Tobias [51, however,
used an electromagnetic vibrator with a velocity feedback control system quite
successfully, but neglected to mention any static deflection problems.

It was decided therefore to develop a system similar to Smith's with
the addition of a displacement feedback for a high tool static stiffness (Fig.
7). After considering frequency, amplitude and inertia requirements,
it was decided that a 675 N (150 lbf) electromagnetic vibrator was adequate
for the cutting force levels anticipated.

The suspension of the tool dynamometer and its mounting, however,
presents a problem because it has to be stiff in the cutting direction to with-
stand the high machining forces but flexible in the thrust direction so that the
tool can vibrate. The design of the force dynamometer housing will be dis-
cussed next.

Design of Flexible Tooling. The design of the force dynamometer
housing can be worked backwards from the required resonant frequency of the
system. In order to offer the vibrator a balanced mechanical impedance the
housing resonant frequency should fall midway between the operating frequency
extremes of 5 to 400 Hz. If this resonance is chosen to be about 100 Hz, then the
ratio of housing mass to bending stiffness is fixed.

The housing mass should be large in comparison with the dynamometer
mass; i.e., r = m 2 /mi < 0.1, - [see equations (4) and (5)] but the overall
mass should be minimized to reduce inertia forces. The dynamometer mass
is made as small as possible by using beryllium and the housing mass is
reduced by machining away redundant material until its mass is about ten
times that of the dynamometer. Once the combined mass is known the required
bending stiffness of the housing is able to be calculated.

14



x ELECTROMAGNETIC
VIBRATOR (T)

I IVELOCITY
DISPLACEMENT

FORCE DYNAMOMETER

Dv0

VV V,

vi

OSCILLATOR

Figure 7. Schematic of basic tool control system.

The compressive stiffness of the housing has to withstand the high
machining forces in the cutting direction and should therefore exceed 5 x 108
N/m.

.Once the required values of stiffness are known, design parameters can
be optimized using the equations given in Appendix A. In the present appli-
cation the ratio of compressive/bending stiffness is sufficiently high to merit
adding notches to the housing leaf spring struts, as shown in Figure 8. The
strut dimensions, therefore, are entirely governed by the compressive/bending
stiffness requirement. The housing surrounding the dynamometer struts (Figs.
2 and 8) should be at least 100 times stiffer than the strut compressive
stiffness of 4 x 108 N/m, in order to minimize cross sensitivity in the
dynamometer.

15



HOUSING

Rn

tt

Ts - Rn L

STRUT

WIDTH = b

NOTCH

Figure 8. Schematic of force dynamometer housing, giving
analytical notation.

The final design requirement is to mount the vibrator behind the dyna-
mometer and form a solid linkage with the vibrator table. With the vibrator
used in this present application weighing 1575 N (350 lbf) and measuring
0.6 m by 0.38 m dia. (24 in. by 15 in. dia. ), in-line mounting tended to bend
the cross slide due to the center of gravity being outside the bed rails, and so

16



it was decided to mount the vibrator vertically as shown in Figure 9 and excite
the dynamometer by transferring the motion through 90 deg using a mechanical
hinge. As the design of this hinge is not entirely relevant to this report it is
given in Appendix B.

It should be remembered that the force dynamometer housing and the
vibrator table are the parameters of a multi-degree-of-freedom system. The
mass of the system has already been minimized and, if the stiffness of the
linkages is high, then the resonant frequencies of the system will be well above
the operating frequency range so that the motion of the dynamometer and vi-
brator table can be considered synonymous.

With all the above design criteria considered the design data works out
as follows:

Rn = 0.0095 m (3/8 in.) m2 = 0.29 kgm

a = 8 m1 = 3.05 kgms

t = 0. 0016 m (1/16 in.) k = 6.79 x 108 N/mm c

Ts = 0.0111 m (7/16 in.) k t = 9.2 x 105 N/m

b = 0.508m (2.0 in.) wt = 83 Hz

Theory. The basic tool control system is represented in Figure 7. Let
the power amplifier, electromagnetic vibrator and force dynamometer be
represented by the following respective transfer functions:

Ti(s) = = G

T2 (s) = x = T

T 3(s) O 118)x ms2 + fs+ k (18)

where the dynamometer is considered as a single-degree-of-freedom system
of mass (m), damping (f) and stiffness (k). The amplifier has a gain (G)and

17
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Figure 9. Schematic arrangement of the vibrator and flexible tooling.
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the vibrator causes a displacement (Tv') for (v') volts input, s is a frequency

operator, v a voltage and x a displacement.

The overall open loop response therefore becomes:

v TG
V _ T( s).T 2 (s).T 3 (s). = TG (19)
v ms2 + fs + k

ist i(st+#)
For a linear system, if v = e and v = Ae in the steady state, then:

vo

o = Ae (20)
'V

where A and 0 are both functions of frequency (s).

The stability of the system can now be examined by plotting the open

loop amplitude (A) /phase (0) response over the entire frequency range and

examining its relationship with the Nyquist (-1,0) stability criterion; i. e.,

A= 1, O= -180' . It should be noted that equation (19) is an idealized solution

depicting the major mode of vibration, but in the real case higher frequency

modes may exist that could lead to instability.

Closing the loop with just a displacement feedback gives:

V
o TG (21)

v. ms 2 + fs + (k+ TG)

whereas adding velocity feedback modifies equation (21) to:

o TG
. (22)

vi  ms 2 + (f + TG)s + (k + TG)

19



Examining equations (21) and (22) shows that the addition of velocity
feedback increases the system's damping and, hence, stability.

The closed-loop system can be described in a similar manner to the

open-loop system of equation (20) by writing:

V
o MeX (23)

V.
1

ist Mi(st + X)
where for a linear system v. = e and v = Me are in the steady state,

1 o

and M and X are both functions of frequency (s). The closed loop response
can now be plotted in terms of frequency in a similar manner to the open loop,
but more important is the ability to predict the closed loop response from the

open loop response of equation (20). This is done realizing that the error
signal (v) is the difference between the control signal (vi) and the feedback

signal (vo). This gives:

v v
o = + -( (24)

v. v v
1

and combining equations (20), (23) and (24) the following relationship can be
established:

M =
&J (A 2 + 2Acos 0 + 1)

sin tan- (25)
= tan- A + cos 0

The system' s open loop response will be examined next and the results
used in conjunction with equation (25) to predict the closed loop response.

Open Loop Tests. The open loop response for the system shown
schematically in Figure 7 is shown for displacement feedback only in Figure 10.
The results are presented in the form of a Nyquist diagram described by

20



equation (20). It can be seen that the feedback/input ratio (v /v) is greater
0

than unity over the frequency range 5 to 180 Hz and that there is a potential
instability at 200 Hz that limits any further increase in gain. A further reso-
nance at 670 Hz was attributed to a linkage resonance but being outside the re-
quired frequency range and in-phase it was of no consequence.

The open loop response for velocity feedback only is shown in Figure
11. The frequency range when v /v is greater than unity is seen to be 40 to

o
250 Hz. The main difference between this response and the one of Figure 10
is the poor low frequency response and the inclusion of some high frequency
resonances at 1910 Hz, 2680 Hz and 2930 Hz attributed to be vibrator table and
linkages resonances.

Combining the two types of feedback results in a good low frequency
response and overcomes the potential 200 Hz instability of the displacement
feedback system. This is shown to be the case in Figure 12, where v /v is

0

greater than unity for the range 0 to 350 Hz and is limited only by the potential
4000 Hz instability.

The major high frequency modes can be substantially eliminated by
modifying the velocity feedback function, first, by adding a high frequency
filter with a cut off at about 1000 Hz; i. e., a first order filter, and second,
by using a notch filter tuned to about 2800 Hz. It should be noted that filtering
tends to introduce phase lag into the system and can cause instabilities at
other frequencies. With the above modifications the system response is signi-
ficantly improved as shown in Figure 13. The extent of control with a gain
margin of 0. 5 and phase margin of 30 deg is given in Table 1.

TABLE 1. FREQUENCY RANGE FOR The control, therefore, be-
WHICH THE OPEN LOOP RESPONSE tween 0 to 200 Hz is excellent while

EXCEEDS THE GIVEN VALUES OF the remaining frequency range has a
v /v feedback/input ratio (v /v) of approxi-

mately two. This is a considerable
v Frequency Range (Hz) improvement on the original unmodi-

fied system.
v Low High

10 50 140 Closed Loop Tests. The open

5 0 200 loop results of Figure 13 are used in
conjunction with equation (25) to pre-

2 0 350 dict the closed loop response. This

1 0 500 is done during the design stage to avoid
unnecessary instabilities damaging the
system when the loop is closed.
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The measured results and those calculated from Figure 13 are com-

pared in Figure 14 and show good correlation. It can be seen that the control

signal amplitude and phase are held very well up to 200 Hz. The control above

200 Hz slowly reduces as the value of v /v, given in Table 1, drops with in-

creased frequency.

CONCLUSIONS

A highly sensitive force dynamometer with temperature stability has

been developed to measure machining forces in two mutually perpendicular

directions with no cross sensitivity from one direction to the other.

The force dynamometer has been incorporated as the toolholder (Fig.

15) in a control system where the cutting tool oscillates in a controlled sinus-

oidal manner independently from the machining forces acting on the tool and

unaffected by the response of the machine tool structure.
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APPENDIX A

CALCULATION OF THE COMPRESSIVE AND BENDING STIFFNESSES
OF THE FORCE DYNAMOMETER HOUSING

Compressive Stiffness (kcp)

The central compressive stiffness of the dynamometer housing illu-
strated in Figure 8 is given by:

kcp = 2F/D (A-l)

where F is the applied force and D is the total deflection of one strut. It
should be noted that the compressive stiffness of the tool due to its overhang is
approximately a factor 2.5 less than the above value.

The total strut deflection is given by:

D = 2d + d (A-2)n s

where d is the deflection of a notch and d the deflection of the central
n s

portion of the strut shown in Figure 8. Let us consider first the deflection d
of the notch. n

The strain in an element of thickness (6y) in Figure A-1 is F/btE,
where t is the thickness at a distance y from the end of the strut. To simplify
the mathematics with little error a parabolic approximation is used for the
notch form:

t = t + (A -3)m R
n

29



(y - R ) tmt = tm +

2 
-

R'n 8y

Figure A-i. Notch geometry.

The total deflection of the notch therefore is given by:

2 Rn R dy
d E 0 R t + (y - R) 2

nm

2FR
aEb tan - (R /a) (A-4)

where a = t

The strain in the central portion is F/bTsE so that (ds) is given by:

FaR

d n (A-5)
s bT E

s

Substitution in equations (A-1) and (A-2) gives:

2bE
k 2bE (A-6)

cp R [(4/a)tan-i(R /a) + a/Ts]
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Bending Stiffness (Kb)

The bending moment assuming that the strut is encastr6 at each end

is given by:

M = F(L/2 - y) (A-7)

The bending stiffness is calculated in a similar way to the compressive

stiffness by considering each element separately. The mathematics, however,
although not complicated, is tedious and will be omitted.

With reference to the notation of Figure 8, the bending stiffness of the

strut is given by:

2 (A-8)

P Q n+ + Stan- (R /a) + na
(a2 + R )2  (a 2 + R ) Sta n EbT

n n s

where

12Rn (L/2 - Rn)2

P Eb a2

6R 3 3(L/2 -Rn) 2

Ebt 2 +

S = Q/aR ; a =31
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APPENDIX B

DESIGN OF FLEXIBLE HINGE

The hinge is designed purely to transfer motion from one axis to another

with no mechanical backlash that could lead to instabilities in a servo control

loop. Motion is transferred from the vibrator axis to the tool axis as shown in

Figure B-1 by means of a pair of mutually perpendicular struts. The combined

torsional stiffness (ktr) of the strut combination is given by:

k Ebd3  (B-l)
tr 61

and the compressive stiffness (kcp) by:

k Ebd (B-2)
cp

S TOOL AXIS

o WIDTH = b

Figure B-1. Flexible hinge geometry and notation.
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The effective stiffness of the hinge along the tool axis should be at

least a factor ten below the bending stiffness of the force dynamometer
housing so that the natural frequency of the system that has already been estab-

lished is not significantly modified, so that ktr = kb p 2/10. The compressive

stiffness should be at least 2. 5 x 108 N/m to ensure only torsional movement

of the hinge. Combining equations (B-1) and (B-2):

Torsional Stiffness (ktr) d2  p2kb 9X 105 .p2

Compressive Stiffness (k ) 6 10k 10x 2. 5x 1d8

cp cp

so that

p = 21.5d (B-3)

Substituting values for E and k in equation (B-2) gives a relation-

ship between b, I and d:

I = 800db (B-4)

There are a number of solutions possible from equations (B-3) and
(B-4) but the most convenient for the present configuration gives the following
geometry:

p = 0.0375m (1.5 in.)

b = 0.0375m (1.5 in.)

d = 0.0016m (1/16 in.)

I = 0. 050m (2.0 in.)

The remaining dimension to establish is the moment arm (q) of the
vibrator axis about "O" in Figure B-2. This is optimized by considering the

total inertia of the vibrating system.
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F "O" VIBRATOR AXIS

F + TTh, h

TOOL AXIS P

m d

Figure B-2. Notation of vibrating system.

Taking moments about "O":

qP = pF d + Th + qF v  (B-5)

where

F d = Xdmd 0 2

Th = Ihh2

F = X m w2

V V V

and m is mass, X is displacement, w angular frequency and P the vibrator

output force.

Considering the hinge angular rotation (Oh) in relation to the displace-

ments Xd and Xv of the dynamometer and vibrator table respectively:

X v X
v d

h q p

so that:
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X - (B-6)
v p

Substitution in equation (B-5) gives:

p = XdM* w2  (B-7)

where M* is the equivalent mass of the system as seen by the vibrator and
is given by:

pmd h  qm

M* = E + - + (B-8)
q pq p

This mass is a minimum when:

q 7 . p (B-9)

If p = 0.0375m (1.5 in.), md = 3 kgm and m = 1 kgm, then q becomes
approximately 0. 0625m ( 2.5 in. ).

The inertia of the hinge is minimized by machining away redundant
material to reduce the second moment of area term (Ih) in equation (B-8).

If the force requirements of the vibrator need to be calculated, then equation
(B-7) can be used to represent the system inertia.
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